

Fuel and Energy Security Study Assumptions and Data

NYISO ICAPWG/MIWG/PRLWG

Paul Hibbard Joe Cavicchi Grace Howland Analysis Group

June 14, 2023

BOSTON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC BEIJING BRUSSELS LONDON MONTREAL PARIS

Table of Contents

Overview

3

Gas Market Data and Assumptions

Electrical Market Data and Assumptions

Model Case Construction

5

6

Next Steps

Appendix

Context and Assignment

- This presentation will provide further detail on the proposed input assumptions and sources of data that feed into the fuel security model, along with alternative assumptions and system stress scenarios
- Data inputs include a combination of publicly-available data and internal NYISO data, with a preference for assumptions vetted previously by stakeholders (where possible)

Winter Periods Modeled

- AG will model three winter periods
- 1. 2023/24 Winter
- The same winter period modeled in the 2019 study
- Refresh reflects updated input data, discussed further below
- Input data assumptions based on the 2023 Gold Book and/or 2021-2040 Outlook Baseline Case
- 2. 2026/27 Winter
 - Input data starting point assumptions based on the 2023 Gold Book and/or 2021-2040 Outlook Contract Case, with offshore wind online dates aligned with currently projected in-service dates reported by developers
- 3. 2030/31 Winter
 - Input data starting point assumptions based on the 2023 Gold Book and/or 2021-2040 Outlook Policy Case 1

Table of Contents

Overview

2

Gas Market Data and Assumptions

Electrical Market Data and Assumptions

6

3

Model Case Construction

5

Next Steps

Appendix

Gas Demand

- Model of anticipated daily LDC (retail) gas demand by heating degree day (HDD)
 - Using New York weather data provided by NYISO from winters 2020/21, 2021/22, and 2022/23
 - Using historical winter gas flow data from S&P Global, Intraday 3 nominations
 - Estimating gas demand separately for upstate and downstate regions
- Residual gas (available for electric generation) assumed ratable during study period i.e., available hourly quantity for electric generation is 1/24th of daily residual quantity
 - Conservative assumption to align with the cold weather conditions being modeled in the study
- LDC gas demand is scaled in the model developed for the study so that predicted retail gas system pipeline demand for ~65-75 HDD matches documented totals for peak design day demand
 - LDCs set design-day demand to 65-75 HDD
 - Only net gas available through pipeline (not from storage or LNG) is considered as available for electric generation
 - Additional supplies available to LDCs are assumed to be reserved to meet retail demand
- Future winter period gas demand modeling in 2026/27 and 2030/31 will be adjusted to reflect estimated policy driven changes in future gas usage (<u>e.g.</u>, impacts resulting from the ongoing implementation of the CLCPA)

LDC Demand vs Degree Day - Upstate

Notes:

[1] Total deliveries are the sum of scheduled capacity during the intraday 3 nomination cycle to LDCs, End Users, and select Pool points. Chart includes all Load Zone A, B, and C gas points not located right next to a gas power plant.

[2] Winter is defined as December, January, and February.

[3] Effective degree day is defined as 65 degrees - Dry Bulb Temperature, and is taken as the simple average of Load Zones A, B, and C temperature data.

Sources:

[A] LDC and End-User Demand: S&P Global Market Intelligence.

[B] Temperature: NYISO.

LDC Demand vs Degree Day – Lower Hudson Valley

Notes:

[1] Total deliveries are the sum of scheduled capacity during the intraday 3 nomination cycle to LDCs, End Users, and select Pool points. Chart includes all Westchester and Rockland county gas points not located right next to a gas power plant.

[2] Winter is defined as December, January, and February.

[3] Effective degree day is defined as 65 degrees - Dry Bulb Temperature, and is taken as the simple average of Load Zone H and Zone I temperature data.

Sources:

[A] LDC and End-User Demand: S&P Global Market Intelligence.

[B] Temperature: NYISO.

LDC Demand vs Degree Day – Modeling Period (Winter 2023/24)

Degree Days and LDC Demand During 17-Day Modeling Period

Gas Pipeline Supply

- Based on review of LDC documents, essentially all of pipeline export capacity from New York to New England is assumed to be under firm contract to deliver flowing gas or transport stored gas
- Gas available for electric generation on LDC Design Day
 - = [Expected Pipeline Imports
 - Max Pipeline Exports to NE
 - LDC Design Day Demand]
- No LNG or storage capacity is assumed to be available for delivery to generators
- Gas supply is assumed to be transferable within New York; except for certain assumed limitations downstate
 - Specifically, in Load Zones J and K, gas availability is reduced starting at effective degree days greater than 50
- Model will reflect limitations of supply to gas generators based on temperature

MMCF/d Gas Supply/Demand Calculation Modeling Period Supply Max New York State Imports from PJM 10,186 [A] Expected New York State Imports from Ontario 400 [B] Gas Available within New York 10,586 |C| = |A| + |B|Modeling Period Demand Expected New York State Exports to Ontario (100)[D] Max Exports to New England (4,087)[E] New York Design Day LDC Demand from Pipeline (4,805)[F]

Max Gas Available for Electric Generation in New York	1,594	[H] = [C] + [G]	
Equivalent MW of Gas Generation Capacity each Hour at 9 MMBtu/MWh Heat Rate	7,651	[I] = [H] * 4.8	

(8,992)

Note:

Gas

Total Outflows/LDC Demand

[1] Design Day LDC Demand aggregated from Winter Supply forms for New York State LDCs.

Sources:

[1] EIA, State to State Pipeline Capacity, January 31, 2023.[2] NYDPS/NYPSC, Case 22-M-0247 - Winter Supply 2022-2023 Forms, Table 1.

Source

EIA

NYISO

NYISO

EIA

NYDPS

|G| = |D| + |E| + |F|

New York State Modeling Period Gas Supply and Demand (MMCF/d)

Table of Contents

Overview

3

Gas Market Data and Assumptions

Electrical Market Data and Assumptions

6

Model Case Construction

5 Ne

Next Steps

Appendix

Electric Demand, Supply, and Reserves

- Model of daily energy usage (in MWh) by heating effective degree day (EDD)
 - Use New York load and weather data provided by NYISO for winters 2020/21, 2021/22, and 2022/23
 - Estimated separately for each of the following regions
 - 1: Load Zones A-E
 - 2: Load Zones F
 - 3: Load Zones G-I
 - 4: Load Zones J
 - 5: Load Zones K
 - Reduced electric load estimated for weekends and holidays
- For each day in 17-day modeling period, total daily energy demand by region is scaled based on EDD from daily temperature profile

Load vs Degree Day – Load Zones A-E

Winter is defined as December, January, and February.
[2] Effective degree day is defined as 65 degrees - Temperature.
Source:
[A] Load and Temperature: NYISO.

Load vs Degree Day – Load Zone F

June 14, 2023

Load vs Degree Day – Load Zones G-I

Winter is defined as December, January, and February.
Effective degree day is defined as 65 degrees - Temperature.
Source:
[A] Load and Temperature: NYISO.

Load vs Degree Day – Load Zone J

 Winter is defined as December, January, and February.
Effective degree day is defined as 65 degrees - Temperature. Source:
[A] Load and Temperature: NYISO.

Load vs Degree Day – Load Zone K

Notes: [1] Winter is defined as December, January, and February. [2] Effective degree day is defined as 65 degrees - Temperature. Source: [A] Load and Temperature: NYISO.

Load vs Degree Day – NYS Modeling Period (Winter 2023/24)

Degree Days and Load During 17-Day Modeling Period

Electric Demand Hourly Shape

- Load/Temperature model calibrated to Winter 2023/24 peak day from 2021-2040 Outlook Baseline Case: December 11, 2023.
- For each day in 17-day modeling period, total daily energy by region (as defined in the prior slides) is scaled based on EDD from daily temperature profile
 - Intraday load shape preserved from the 2021-2040 Outlook analysis
- The hourly load shape for future winters 2026/27 and 2030/31 will be similarly calibrated based on the appropriate 2021-2040 Outlook load forecasts in each year and include the projected 90/10 winter peak demand

Winter 2023/24 System Peak Day Intraday Hourly Profile

Source: [1] NYISO 2021-2040 Outlook Baseline Case Load Data for 2023.

Winter 2023/24 System Peak Day Summary Statistics

	Values	for Monday, De	cember 11, 2023
Zone	Implied	Implied Daily	Total Daily Energy,
Group	Average Temp.	Average EDD	Baseline 2023/24 (MWh)
A-E	12.0	53.0	175,385
F	12.4	52.6	38,428
G-I	18.3	46.7	56,608
J	24.8	40.2	140,046
Κ	22.6	42.4	59,074

Statistics for 2023/24 Winter Peak Day

Note:

[1] Daily Average EDD is defined as 65 - Dry Bulb Temperature.

Source:

[1] NYISO 2021-2040 Outlook Baseline Case Load Data for 2023.

Load vs Temperature during 17 Day Modeled Period (Winter 2023/24)

Assumed Energy Imports/Exports during Modeling Period (Starting Point Assumptions)

Imports/exports fixed unless reserve shortage limit binds

Electric Demand, Supply, and Reserves

- Supply resource capability derates applied during the 17-day modeling period based on historical data from NYISO. Derates used are winter-specific.
- Transmission Limits between internal regions (see Slide 11) based on N-1-1 contingency analysis; will include transmission upgrades in response to Western and AC Transmission Public Policy Transmission Needs.
- Continuing to monitor the NYISO's ongoing Long Island Offshore Wind Export Public Policy Transmission Need process for consideration of potential implications for winter 2030/31 modeling assumptions
- Assumptions regarding simple cycle gas turbine deactivations in response to the proposed NYSDEC "peaker rule" developed based on Gold Book Tables IV-4, 5, and 6.
- Peakers that have announced retirement as of 2023 (711 MW) are retired for winter 2023/24
- Remaining incremental peakers are assumed to retire as of winter 2026/27 (1,270 MW), with the exception of any resources that may potentially be identified as needing to be retained for reliability
 - Continuing to monitor the results of the NYISO's short-term reliability process with respect to any identified reliability needs and any resulting resource retention requirements to model as part of the future winter periods

Table of Contents

Overview

3

Gas Market Data and Assumptions

Electrical Market Data and Assumptions

4

5

6

Model Case Construction

Next Steps

Appendix

Literature Review Update

- Types of sources reviewed: cold weather reports and rules from NERC, FERC, NYISO, ISO-NE, and PJM
- Main themes include:
 - The importance of studying winter reliability and generator preparedness
 - NERC reliability standards and alerts emphasize the need for winter preparedness data collection and evaluation
 - Emphasis on the importance of generator access to fuel, and the value of fuel switching capability
 - Fuel disruption scenarios are important, taking into account applicable environmental/regulatory limits
 - Consider the impact of regional cold weather on model inputs such as temperature, pipeline gas availability, etc.
 - Characterize and study both high-probability, low-impact (HPLI) and high-impact, low-probability (HILP) cases
 - Emphasis on the importance of adding transmission to mitigate congestion issues and load loss in extreme weather conditions
 - Winter Storm Elliott load losses were largely caused by plant equipment failures, gas well freeze-offs, and losses of pipeline compression
- We have considered take-aways from the literature in developing the initial recommendations for scenarios and disruptions discussed on the following slides

Combination Case Construction

- Develop a manageable set of cases to run and evaluate
- Case = Scenario + Physical Disruptions
- Goal capture a plausible range of futures, and a representative set of extreme events to "bookend" results, informed by historical experience and the literature review conducted by AG
- For consideration and feedback, the following set of scenarios and disruptions represent the initial recommendations for the study

Scenario Construction: Disaggregated Conditions (Initial Recommendations)

2019 FES Study	Winter 2023/24	Winter 2026/27	Winter 2030/31	
Conditions				
Initial Conditions	PK retirements fixed per model year	PK retirements fixed per model year	PK retirements fixed per model year	
<u>IM900/IM0</u> 900MW vs. 0MW capacity imports	No Change	No Change	No Change	
<u>PK</u> NYSDEC "Peaker Rule" requirements				
<u>NGR</u> Reduced non-firm gas availability	Replace with fuel storage conditions, tackle gas in disruptions	Replace with fuel storage conditions, tackle gas in disruptions	Replace with fuel storage conditions, tackle gas in disruptions	
	Fuel Storage: Historical/High oil in tanks at the start of the period	Fuel Storage: Historical/High oil in tanks at the start of the period	Fuel Storage: Historical/High oil in tanks at the start of the period	
REN Delayed construction of new renewables		Delay in 2021-2040 Outlook Contract case 2026 renewables	Delay in 2021-2040 Outlook Policy 1 case 2030 renewables	

Proposed Scenario Combinations (Initial Recommendations)

2019 FES Study	2023/24	2026/27	2030/31
Scenario 1: Initial Conditions + IM900	Scenario 1: Initial Conditions + IM900	Scenario 1: Initial Conditions + IM900	Same as 2026/27, with a different definition of
Scenario 2: Initial Conditions + IM900 + PK	Scenario 2: Initial Conditions + IM0	Scenario 2: Initial Conditions + IM0	REN
Scenario 3: Initial Conditions + IM0	Scenario 3: Initial Conditions + IM900 + High Fuel Storage	Scenario 3: Initial Conditions + IM900 + High Fuel Storage	
Scenario 4: Initial Conditions + IM0 + PK	Scenario 4: Initial Conditions + IM0 + High Fuel Storage	Scenario 4: Initial Conditions + IM0 + High Fuel Storage	
Scenario 5: Initial Conditions + IM900 + PK + NGR		Scenario 5: Initial Conditions + IM900 + REN	
Scenario 6: Initial Conditions + REN + IM0 + PK		Scenario 6: Initial Conditions + IM0 + REN	
Scenario 7: Initial Conditions + IM0 + PK + NGR		Scenario 7: Initial Conditions + IM900 + High Fuel Storage + REN	
Scenario 8: Initial Conditions + REN + IM0 + PK + NGR		Scenario 8: Initial Conditions + IM0 + High Fuel Storage + REN	

Gas Physical Disruptions (Initial Recommendations)

Propose 3 gas disruptions to address the full range of discussed and reviewed potential gas disruptions

<u>**1. Non-firm gas unavailable F-K**</u> *To simulate localized gas market disruption*

Representative of the following gas system contingencies (considering stakeholder input and lit review):

 Complete outage/derate of a compressor station or local pipeline capacity 2. Non-firm gas unavailable NYCA

To simulate loss of a major pipeline, or more serious regional inability to get gas

Representative of the following gas system contingencies (considering stakeholder input and lit review):

- Complete outage/derate of a pipeline
- Gas freeze offs

3. Non-firm gas unavailable NYCA for 3-4 Days

To simulate shorter-term system disruptions due to weather-driven outages

<u>Representative of the following gas system</u> <u>contingencies (considering stakeholder input</u> <u>and lit review):</u>

- Gas supply disruptions experienced in Uri/Elliott
- Temporary loss of major pipeline/compression
- Other temporary unavailability of gas due to physical disruptions and/or market factors

Proposed Physical Disruptions (Initial Recommendations)

Recommended disruptions would apply to all three modeled winters.

	2019 FES Study Disruptions	Recommended Disruptions
S	Starting Conditions (No Disruptions)	No Change
	Non-Firm Gas Unavailable F-K	No Change
Gas	Non-Firm Gas Unavailable NYCA	No Change
Cuo		Non-firm gas unavailable NYCA for 3-4 days
	No Truck Oil Refill	No Change
.	No Barge Oil Refill	No Change
Oil	No Oil Refill	No Change
	Low Fuel Inventory	
	High Outage	No Change
Infrastructure	SENY Deactivation	No Change
	Nuclear Outage	No Change
	Combination Disruption	Reduced non-firm gas NYCA + reduced refill capability + High Outage

Initial Recommendations: Proposed Scenarios and Disruptions (Winter 2023/24)

• All combinations of scenarios and disruptions will be modeled.

	Scenario 1: Initial Conditions + IM900	Scenario 2: Initial Conditions + IM0	Scenario 3: Initial Conditions + IM900 + High Fuel Storage	Scenario 4: Initial Conditions + IM0 + High Fuel Storage
No Disruptions (Starting Conditions)				
Non-Firm Gas Unavailable F-K				
Non-Firm Gas Unavailable NYCA for 3-4 days				
No Truck Oil Refill				
No Barge Oil Refill				
No Oil Refill				
High Outage				
SENY Deactivation				
Nuclear Outage				
Combination Disruption				

Initial Recommendations: Proposed Scenarios and Disruptions (Winter 2026/27 and Winter 2030/31)

• All combinations of scenarios and disruptions will be modeled.

	Scenario 1: Initial Conditions + IM900	Scenario 2: Initial Conditions + IM0	Scenario 3: Initial Conditions + IM900 + High Fuel Storage	Scenario 4: Initial Conditions + IM0 + High Fuel Storage	Scenario 5: Initial Conditions + IM900 + REN	Scenario 6: Initial Conditions + IM0 + REN	Scenario 7: Initial Conditions + IM900 + High Fuel Storage + REN	Scenario 8: Initial Conditions + IM0 + High Fuel Storage + REN
No Disruptions (Starting Conditions)								
Non-Firm Gas Unavailable F-K								
Non-Firm Gas Unavailable NYCA for 3-4 days								
No Truck Oil Refill								
No Barge Oil Refill								
No Oil Refill								
High Outage								
SENY Deactivation								
Nuclear Outage								
Combination Disruption								

Table of Contents

Overview

3

Gas Market Data and Assumptions

Electrical Market Data and Assumptions

5

6

Model Case Construction

Next Steps

Appendix

Next Steps

Tentative Schedule

- Today: further discussion of study assumptions/data and development of scenarios
- July 2023: finalize discussion of study assumptions/data and scenarios/cases (if necessary)
- July/August 2023: AG presentation of fuel security analysis results/findings and initial recommendations
- August/September 2023: AG presentation of final report

Table of Contents

Overview

3

Gas Market Data and Assumptions

Electrical Market Data and Assumptions

6

Model Case Construction

5

Next Steps

Appendix

Appendix A: Resource Additions and Retirements Winter 23/24

Incremental Generating Resource Additions for Winter 23/24 ^[A]							Increm	ental Generating	Resource Retirem	ents for Winter 2	3/24 ^[B]		
				Dispatchable							Dispatchable		
	Utility-Scale	Land		Emission-Free							Emission-Free		
Load Zone	Solar	Based Wind	Offshore Wind	Resources	Storage	Total	Load Zone	Kerosene	Natural Gas	No. 2 Fuel Oil	Resources	Storage	Total
А	40	100	-	-	-	140	А	-	-	-	-	-	-
В	-	-	-	-	-	-	В	-	-	-	-	-	-
С	40	272	-	-	-	312	С	-	-	-	-	-	-
D	-	-	-	-	-	-	D	-	-	-	-	-	-
Е	40	106	-	-	-	146	Е	-	-	-	-	-	-
F	100	-	-	-	-	100	F	-	-	-	-	-	-
G	30	-	-	-	-	30	G	43	-	-	-	-	43
Н	-	-	-	-	-	-	Н	-	-	-	-	-	-
Ι	-	-	-	-	-	-	Ι	-	-	-	-	-	-
J	-	-	-	-	-	-	J	37	599	-	-	-	636
K	-	-	130	-	-	130	K	-	-	32	-	-	32
Total	250	478	130	-	-	858	Total	80	599	32	-	-	711

Notes:

[A] Incremental resource additions coming online as of Winter 23/24.

[B] Incremental resource retirements going offline as of Winter 23/24.

Sources:

[1] 2021-2040 System & Resource Outlook, Data Catalog, Contract Case Renewable Projects.

[2] 2023 Gold Book.

Appendix B: Resource Additions and Retirements Winter 26/27

	Increm	nental Generatin	g Resource Addit	ons for Winter 26	/27 ^[A]			Increm	ental Generating	Resource Retirem	ents for Winter 2	6/27 ^[B]	
	114:1:4- C1-	Tand		Dispatchable							Dispatchable		
	Utility-Scale	Land		Emission-Free							Emission-Free		
Load Zone	Solar	Based Wind	Offshore Wind	Resources	Storage	Total	Load Zone	Kerosene	Natural Gas	No. 2 Fuel Oil	Resources	Storage	Total
А	1,135	340	-	-	215	1,689	А	-	-	-	-	-	-
В	510	147	-	-	5	662	В	-	-	-	-	-	-
С	820	181	-	-	8	1,009	С	-	-	-	-	-	-
D	180	-	-	-	-	180	D	-	-	-	-	-	-
Е	739	221	-	-	5	965	Е	-	-	-	-	-	-
F	750	-	-	-	19	769	F	-	-	-	-	-	-
G	140	-	-	-	330	470	G	-	88	-	-	-	88
Н	-	-	-	-	18	18	Н	-	-	-	-	-	-
Ι	-	-	-	-	6	6	Ι	-	-	-	-	-	-
J	-	-	816	-	285	1,101	J	-	709	-	-	-	709
K	-	-	880	-	9	889	K	18	125	329	-	-	472
Total	4,275	888	1,696	-	899	7,758	Total	18	923	329	-	-	1,270

Notes:

[A] Incremental resource additions coming online after Winter 23/24 and as of Winter 26/27.

[B] Incremental resource retirements going offline after Winter 23/24 and as of Winter 26/27.

[C] Based on developer reported dates, 2,490 MW of Offshore Wind capacity is excluded from the Winter 26/27 additions. This contracted capacity is assumed online for the 2030/31 modeling period.

Sources:

[1] 2021-2040 System & Resource Outlook, Data Catalog, Contract Case Renewable Projects.

[2] 2023 Gold Book.

Appendix C: Resource Additions and Retirements Winter 30/31

	Policy Case Scenario 1 - Capacity Expansion Cumulative Additions (MW) - 2030 ^[A]						
				Dispatchable			
	Utility-Scale	Land		Emission-Free			
Load Zone	Solar	Based Wind	Offshore Wind	Resources	Storage	Total	
А	-	2,104	-	-	24	2,128	
В	-	690	-	-	109	799	
С	-	1,646	-	-	374	2,020	
D	-	199	-	-	-	199	
Е	-	962	-	-	387	1,349	
F	-	202	-	-	105	307	
G	-	147	-	-	-	147	
Н	-	-	-	-	306	306	
Ι	-	-	-	-	44	44	
J	-	-	1,230	-	1,286	2,516	
K	-	-	1,980	420	355	2,755	
Total	-	5,948	3,210	420	2,990	12,568	

Notes:

[A] The additions are reflective of generation expansion specific to the Policy Case (i.e., does not include capacity associated with generators included in the Contract Case) and are cumulative for 2025.

Source:

[1] 2021-2040 System & Resource Outlook, Data Catalog, Outlook Policy Additions by Pocket-Bus.

Appendix D: 2019 Study Scenarios and Disruptions

Table ES-1: System Scenarios

Scenario Type	Infrastructure	Imports	Oil	Natural Gas
Description	REN: delayed construction of new renewables, such that solar capacity is reduced to 38.5% and wind capacity is reduced to 48% of 2017 CARIS Phase 1 "System Resource Shift" case assumed levels	IM900: 900 MW capacity imports IM0: 0 MW capacity imports	PK: potential retirements in response to the requirements for 2023 set forth in the proposed "peaker rule"	NGR: Reduced non-firm gas availability to support ~2000 MW of gas-fired generation in zones A-F, ~1000 MW of gas-fired generation in zones G-I, and no non-firm gas to support generation in zones J and K
Scenario 1		IM900		
Scenario 2		IM900	РК	
Scenario 3		IM0		
Scenario 4		IM0	РК	
Scenario 5		IM900	РК	NGR
Scenario 6	REN	IMO	РК	
Scenario 7		IM0	РК	NGR
Scenario 8	REN	IM0	РК	NGR

Table ES-2: Physical Disruptions

#	Disruption Name	Description
1	Starting Conditions	No physical disruptions
2	SENY Deactivation	Loss of significant capability (1,000 MW) in SENY (specifically, zones G-I)
3	High Outage	Double unit forced outage rate compared to historical averages
4	Nuclear Outage	Loss of major nuclear facility upstate
5	No Truck Oil Refill	Unavailability of truck oil fuel delivery based on historical events such as snow storms
6	No Barge Oil Refill	Unavailability of barge oil fuel delivery based on historical events such as rivers freezing
7	No Oil Refill	Unavailability of any oil fuel delivery due to severe fuel limitations affecting both barge and truck refueling
8	Non-Firm Gas Unavailable F-K	No gas-fired generation capability available in zones F-K
9	Low Fuel Inventory	Reduction of initial oil storage by unit and oil fill max tank quantity to half of historical averages
10	Non-Firm Gas Unavailable NYCA	No gas-fired generation capability available anywhere in the New York Control Area (NYCA)
11	Extreme Disruption	Combination of no gas-fired generation capability available anywhere in NYCA, loss of significant dual fuel capability in zones G-I, and unavailability of any oil refill capability

Contact

Paul Hibbard Principal 617 425 8171 paul.hibbard@analysisgroup.com Joe Cavicchi Vice President 617 425 8233 joe.cavicchi@analysisgroup.com Grace Howland Associate +44-203-480-7917 grace.howland@analysisgroup.com